The PP2A Inhibitor I2PP2A Is Essential for Sister Chromatid Segregation in Oocyte Meiosis II
نویسندگان
چکیده
Haploid gametes are generated through two consecutive meiotic divisions, with the segregation of chromosome pairs in meiosis I and sister chromatids in meiosis II. Separase-mediated stepwise removal of cohesion, first from chromosome arms and later from the centromere region, is a prerequisite for maintaining sister chromatids together until their separation in meiosis II [1]. In all model organisms, centromeric cohesin is protected from separase-dependent removal in meiosis I through the activity of PP2A-B56 phosphatase, which is recruited to centromeres by shugoshin/MEI-S332 (Sgo) [2-5]. How this protection of centromeric cohesin is removed in meiosis II is not entirely clear; we find that all the PP2A subunits remain colocalized with the cohesin subunit Rec8 at the centromere of metaphase II chromosomes. Here, we show that sister chromatid separation in oocytes depends on a PP2A inhibitor, namely I2PP2A. I2PP2A colocalizes with the PP2A enzyme at centromeres at metaphase II, independently of bipolar attachment. When I2PP2A is depleted, sister chromatids fail to segregate during meiosis II. Our findings demonstrate that in oocytes I2PP2A is essential for faithful sister chromatid segregation by mediating deprotection of centromeric cohesin in meiosis II.
منابع مشابه
Nucleosome Assembly Proteins Get SET to Defeat the Guardian of Chromosome Cohesion
Cohesion between sister chromosomes is a critical mechanism used by eukaryotic cells to accomplish accurate chromosome segregation. As an analogy, imagine that you are struck one day by the (inexplicable) urge to segregate all your socks into two equal piles. The task will be much easier if you previously took the time to pair them up before tossing them in your dresser drawer. Similarly, keepi...
متن کاملOverexpression of SETβ, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocytes.
Chromosome segregation in mammalian oocyte meiosis is an error-prone process, and any mistake in this process may result in aneuploidy, which is the main cause of infertility, abortion and many genetic diseases. It is now well known that shugoshin and protein phosphatase 2A (PP2A) play important roles in the protection of centromeric cohesion during the first meiosis. PP2A can antagonize the ph...
متن کاملDrosophila protein phosphatases 2A B′ Wdb and Wrd regulate meiotic centromere localization and function of the MEI-S332 Shugoshin
Proper segregation of chromosomes in meiosis is essential to prevent miscarriages and birth defects. This requires that sister chromatids maintain cohesion at the centromere as cohesion is released on the chromatid arms when the homologs segregate at anaphase I. The Shugoshin proteins preserve centromere cohesion by protecting the cohesin complex from cleavage, and this has been shown in yeasts...
متن کاملOocyte Cohesin Expression Restricted to Predictyate Stages Provides Full Fertility and Prevents Aneuploidy
To ensure correct meiotic chromosome segregation, sister chromatid cohesion (SCC) needs to be maintained from its establishment in prophase I oocytes before birth until continuation of meiosis into metaphase II upon oocyte maturation in the adult. Aging human oocytes suffer a steep increase in chromosome missegregation and aneuploidy, which may be caused by loss of SCC through slow deterioratio...
متن کاملCdc55 coordinates spindle assembly and chromosome disjunction during meiosis
During meiosis, two consecutive nuclear divisions follow a single round of deoxyribonucleic acid replication. In meiosis I, homologues are segregated, whereas in meiosis II, sister chromatids are segregated. This requires that the sequential assembly and dissolution of specialized chromosomal factors are coordinated with two rounds of spindle assembly and disassembly. How these events are coupl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013